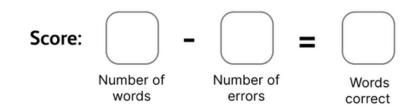
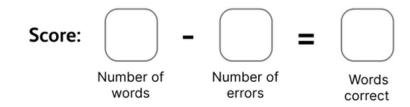

Reading Fluency

Student:	Date:	
SET 1		
Jack and Ben both heard the noise of the ai	rcraft at the same time. When	15
they looked up, they could see it flying very	high, 'It's a jet,' remarked Jack,	31
'I wonder where it's going. I wish I was in it.	I bet the pilot can see half the	50
world from up there.'		55
'I bet he hardly ever looks,' replied Ben. 'Mo	st of the time he's flying he'll	71
be watching the instruments.'		76
'Well, he'll have radar, so the plane's perfec	tly safe even if it's in cloud or in	92
the dark,' said Jack.		97
'Radar's nothing new,' replied Ben 'It was ir	nvented by bats. Well, not	110
exactly invented by them, but they use rada	r. They send out a sort of	124
highpitched scream, and when the sound-we	aves hit something they bounce	135
back. The bat has a different kind of hearing	g which picks up the sound	149
waves so it just twists away from things befo	ore it sees them.'	162
'Have you been reading books again?' aske	d Jack.	171
'Yes', replied Ben, 'How did you know?'		179

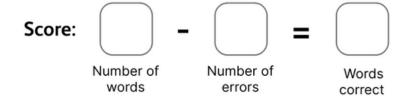

Reading Fluency

Student:	Date:
SET 2	
Zeppelin 1 was driven by two engines which	were fixed below it. Count 15
Zeppelin believed it would be a new weapor	of war. But the engines of this 31
first Zeppelin were far too small to be effect	ive. It had to be broken up 50
because it cost too much money. Zeppelin 2	did little better and was 55
destroyed in a storm. But Zeppelin 3 worked	well. At last the German High 71
Command agreed that it was a worthwhile r	nachine. 76
By the start of the Great War in 1914 a num	ber of Zeppelins were in use. 92
During the war they even carried out night b	oombing raids over England. 97
The Zeppelins of that time were almost 215	metres in length. It is hard to 110
imagine that these monster machines made	e such raids all those years ago. 124
After the war it semed that such airships we	re here to stay. Britain, France, 135
Italy and the USA were all building them. Th	e greatest Zeppelin of all, the 149
Hindenburg, impressed the whole world. Hin	denburg was about 300 metres 162
long. It had four 1,000 horse-power engines	. 171
In 1937 this Zeppelin made a flight across t	he Atlantic to the USA. 179
Thousands of people came to watch its land	ing. The beautiful, gleaming,
airship came gently down to its landing poir	ıt. Suddenly it gαve α jerk. There
was a flash of flame. A moment later the wh	ole 300 metre length crumpled
to the ground. Its crew and passengers all di	ed.
When Hindenburg was destroyed it seemed	to mark the end of all gas-filled
airships.	

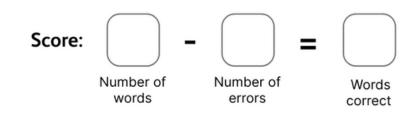
Reading Fluency


Student:	Date:	
SET 3		
Sally, Martin and Mike entered the back wor	kshop of the garage. They saw	13
Tom having an argument with a boy who w	as sitting on a motor bike.	27
'Look, Jack' said Tom, 'That's not your bike,	and you can't ride one	40
anyhow, so get off.'		45
The motor bike was on its rear stand in the r	niddle of the workshop. Jack	60
shrugged his shoulders and said, 'Look, that	's the front brake, that's the	72
clutch, that's the gear change and here's th	e ignition.' Then he turned on	86
the ignition and the engine started up. 'Get	off!' shouted Tom.	98
'It's easy!' yelled Jack, over the engine noise	e. He suddenly gave a jerk, and	113
hit the gear lever as the bike bumped forwa	rd off its stand. They all knew in	129
a flash that Jack meant to ride the bike out	of the garage.	142
The rear wheel of the bike came straight do	wn on to a pool of oil. The	158
wheel spun round, the bike slid to one side a	nd then suddenly shot away. It	173
went straight at the corner of the garage. Th	ne front wheel hit the leg of a	189
bench and the bike bounced back before ha	ving another go. Then it fell	202
over, throwing Jack to one side.		208
The engine stalled. All at once there was sile	nce. Jack got to his feet and	223
pulled a face at the others. They couldn't sp	eak for laughing. He was red in	238
the face and covered with blotches of oil an	d dirt.	248

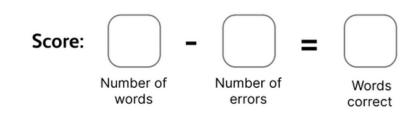
nisai units of sound


Reading Fluency

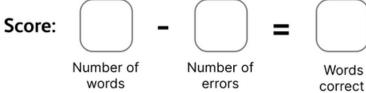
15
29
42
57
72
82
97
112
129
143
156
164
178
195
210
217
230
248
262


Reading Fluency

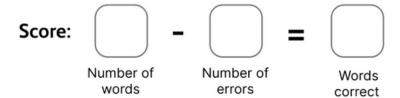
dent:Date:	
ET 5	
Thomas Edison's first recording machine was a rough and simple sort of	12
thing. It didn't have a tape but instead used a roll or cylinder of metal.	27
He spoke a few words of a nursery rhyme into it, and then set it to play	44
back to him. The funny, squeaky voice on the machine spoke to him quite	58
clearly. It said, 'Mary had a little lamb, its fleece was white as snow.' That	74
was well over a hundred years ago in 1877.	83
The first machine which was like a real tape-recorder, however, was made in	97
Denmark in 1898. Even so, it wasn't a true tape-recorder. It used wire	111
instead of tape.	114
Thomas Edison is, of course, famous for other inventions. He never stopped	126
making things. He made an electric light bulb, and switches and fuses. He	139
also designed a machine which could make electric power – the machine	15′
which we call a dynamo.	156
He spent \mathfrak{a} lot of time improving the working of the telephone and the	17(
telegraph. He helped to design cameras for film-making. He played a part	183
in the invention of the typewriter. He designed new ways to improve the	196
making of cement and concrete. He built an electric train. He was still hard	210
at work and full of new ideas when he was 80 years old.	223
One of the most amazing things about Thomas Edison was that he had no	237
training as a scientist. He was a self-made and self-taught man. He is one	253
of a very few such men in history. They were men who had a kind of genius	270
for inventing things.	273


Reading Fluency

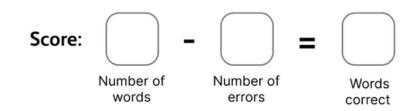
Student:Date:_	
SET 6	
When a human heart comes to a stop the person dies. That is simply	14
because the heart is a pump. If it stops, the body, which depends on the	at 29
pump, also stops. It is this pump which keeps our blood on the move, fro	om 44
the end of each toe to the top of the head.	55
As blood circulates it collects carbon dioxide. This is the waste matter in	the 69
blood stream. The carbon dioxide makes the blood darker as it is collect	ed. 82
The blood then takes on the more purple colour, and it is this that we co	ın 98
see showing in our veins.	103
The blood returns to the right-hand section of the heart, from where it is	s 118
pumped to the lungs for cleaning. Then it carries on to the left section o	of 133
the heart. From there the clean blood is pumped out once more to circu	late 147
round the body. This constant pumping and cleaning goes on without a	159
stop until we die.	163
An amazing number of people live to be 100 years old. In such a case, t	hat 179
means that the heart has been pumping non-stop for a century. I do no	t 194
know of any machine or engine ever made by man which has worked fo	or 208
100 years non-stop.	212


Reading Fluency

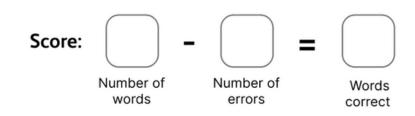
Student:	Date:	
SET 7		
In the early days of paper making in England	, the paper was made from 1	14
cloth. The kind of cloth most used was linen.	At the same time as the paper 3	30
making industry was growing, so was the art	of printing.	40
It was soon clear that linen cost too much to	be made into paper. So the 5	56
paper makers had to look for something else.	They found the answer in 6	59
wood.	7	70
Today, the paper that you read from was one	e part of a tree. It may have 8	36
come from Canada or possibly a European co	ountry like Norway. 9	96
There is a huge amount of paper used in the	world every year. In this 11	11
country the paper used for each person each	year weighs more than four 12	24
sacks of potatoes. Only great forests can sup	ply that amount of paper. 13	36
The world is using more and more paper ever	ry year. If man is not very 15	51
careful he may run short of trees. That is why	v it is important to recycle 16	56
paper products whenever possible.	17	70


Reading Fluency

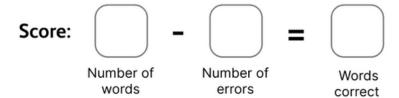
tudent:Date:Date:	
SET 8	
Initially, due to their horses and guns, the Native Americans did well on the	14
great plains of North America. They could now hunt and kill the buffalo	27
better than before. But the buffalo herds suffered heavily and became	38
fewer in number. Then the European settlers began to move west, building	50
railways and seeking gold. Things became worse. The Native Americans	60
always had to fight or to move west.	68
In the nineteenth century more and more Native American tribes decided	79
to fight for their land. However, the tribes did not join with each other. They	94
usually fought separately. It was as though an army went into war one	107
regiment at a time. The Native Americans were fighting a strong army.	119
Good fighters though the Native Americans were, in the end they could not	132
hope to beat the United States Army. The last clash was in 1890, at the	147
Battle of Wounded Knee, and the Native Americans never wore war-paint	159
in battle again.	162
The remaining tribes were moved to reservations.	169
Years later with the rise of the film industry, people all over the world saw	184
Hollywood films about the 'Wild West'. Some of the films were based on	197
stories and legends of the West, although most of them did not present a	211
true story. Both television and cinema had an influence on the way people	224
thought about the conflict between European settlers and the Native	234
Americans. Gradually people have understood how the Native American	243
way of life was destroyed. Today their descendants have revived their	254
traditional customs.	256


Reading Fluency

Student:Date:	
SET 9	
The oil industry grew as a direct result of the motor car. More precisely, it	15
was because of the internal combustion engine, which burns the petrol	26
made from oil.	29
Oil is formed from the remains of plants and creatures living millions of	42
years ago. The weight of tons of rock pressed on those remains. This caused	56
a gradual chemical change. Crude oil is the end result of that process.	69
To obtain the oil a gigantic drill works its way down from the surface and	84
breaks into the lake of oil. The liquid, which has been trapped and	97
compressed under the weight of the rock above it, rushes to the surface.	110
There are two main problems for the oil industry. First of all scientists have	124
to locate the oil-bearing rocks. Then the oil men have to drill at exactly the	140
right spot. Some drills have to bite into the ground as deep as four miles	155
down before oil is found.	160
When the oil is found, it has to be moved, usually by pipeline. Some pipeslines	175
are over 1000 miles in length, and they can be well over a metre	189
across. From the end of the pipe-line the oil may be shipped in oil-tankers to	206
the refineries. In Britain, France and the Netherlands for instance, these are	218
usually close to the sea. This makes loading and unloading easier.	229
Large amounts of oil are used for fuel. Industry uses oil to make products	243
such as paint and plastics. There is a danger that the world will eventually	257
run short of oil as oil wells run dry. Sources of renewable energy, such as	272
wind and solar power, are slowly becoming more popular.	281


Reading Fluency

Student:	Date:
SET 10	
On the Western Front, late in 1914, it had become cle	ar that the armies 14
were stuck. There were great deep trenches everywhe	re. It was impossible 25
to break through.	28
A British officer suggested that a new kind of weapon	was required. It 41
would have to be armour-plated and driven by a powe	erful engine. It should 55
also be able to cross rough and muddy country.	64
By 1916 a number of these new weapons had been co	onstructed. Winston 76
Churchill helped arrange for them to be made quickly,	although he was 88
actually in charge of the Navy at the time.	97
One serious problem concerning the new weapons wa	s how to get them to 110
the front line in secret. Churchill had the answer to the	at. He gave orders 124
that each one should have a big wooden box fixed rou	und it. On each box 139
was the label 'TANK'. Any enemy spy who saw the bo	xes might have 152
wondered why the British army wanted so many large	water containers in 164
France.	165
We do not know whether they spotted these big wood	len crates or not. 178
What we do know is that Churchill had invented a new	r meaning for the 192
word 'Tank'.	194


Reading Fluency

SET 11Although the human body can go very deep under water, for every three13metres of depth, the pressure increases by 4 kilos per square metre. The26weak parts of the human body which can be particularly affected are the39ears and the lungs.43
metres of depth, the pressure increases by 4 kilos per square metre. The 26 weak parts of the human body which can be particularly affected are the 39
weak parts of the human body which can be particularly affected are the 39
ears and the lungs. 43
If a diver descends to about a hundred metres there is real danger. Because 57
of pressure, our bodies are unable to get rid of the nitrogen which we 71
breathe in. At this depth the nitrogen being absorbed into the bloodstream 83
begins to affect the brain. The diver becomes confused and gets into a 96
condition described as 'raptures of the deep'. 103
If he then comes quickly to the surface, the nitrogen will cause his blood to 118
bubble, and he can die. This danger is generally known as the 'bends'. The 132
only way for the bends to be avoided used to be by the diver coming up to 149
the surface very slowly. The modern method is for him to go into a special 164
tank which is termed a 'decompression chamber'. In this chamber the 175
pressure is the same as it was under water. Very gradually the pressure is 189
adjusted, until it is equal to that at ground level. 199
So the next time you dive, and feel the pressure on your ears, take care! 214
Don't go too deep! 218

Reading Fluency

Student:Date:	
SET 12	
We all know that one guarantee that a bottle of milk is pure is when it is	17
marked 'Pasteurised'.	19
The man who gave his name to this process was born in France in 1822. He	35
came from a humble family, and like the American inventor Edison, his	47
name was to become a household word. But unlike Edison, Louis Pasteur	59
was a trained scientist – a chemist in fact.	68
He was a quiet, modest person. The history of his work and the story of his	84
discoveries and theories give an indication of the variety of his	95
achievements.	96
When he was 32 he became Professor of Chemistry at Lille. Not long after	110
that he began work on research into germs in liquids – in wine, beer,	124
vinegar. He found answers to these impurities. However, when he claimed	135
that millions of tiny microbes lived in the air around us he was laughed at.	150
Others criticised him for his conviction that many of those germs were so	163
small that only the best microscopes could reveal them.	172
His later work in animal and poultry diseases added to his achievements.	184
Finally he explained the causes of the dreaded disease of rabies. The	196
modern use of inoculation to stop diseases owes much to him. He is also	210
one of the foremost names in the history of food hygiene.	221
Louis Pasteur died in 1895. Many leading research institutes have since	232
been named after him. Millions of people all over the world, who have never	246
heard of him, have been saved from death by his work.	257

